Global Engineering Solutions

Global Engineering solutions

Global Engineering Solutions presents, introduction to :

"RAPID PROTOTYPING TECHNOLOGY"

'RAPID PROTOTYPING' is a family of fabrication processes developed to make engineering prototypes in minimum lead time based on a CAD model of the item.

Traditional method is 'Machining'

• Can require significant lead-times - several weeks, depending on part complexity and difficulty in ordering materials.

RP allows a part to be made in hours or days, given that a computer model of the part has been generated on a CAD system.

RP - Two Basic Categories :

1. Material removal RP - 'Machining', using a dedicated CNC

machine that is available to the design department on short notice.

- Starting material is often wax
 - Easy to machine
 - Can be melted and re-solidified
- The CNC machines are often small called desktop machining
- 2. Material addition RP adds layers of material

one at a time to build the solid part from bottom to top.

Classification of RP Technologies:

- \checkmark There are various ways to classify the RP techniques that have currently been developed
- \checkmark The RP classification used here is based on the form of the starting material:
 - 1.Liquid-based (Stereolithography, Solid Ground Curing, Droplet Deposition Manufacturing)
 - 2.Solid-based (Laminated object manufacturing, Fused deposition modeling) 3.Powder-based (Selective Laser Sintering ,Three Dimensional Printing)

RP Applications :

Applications of rapid prototyping can be classified into three categories:

- 1. Design
- 2. Engineering analysis and planning
- 3. Tooling and manufacturing

DESIGN APPLICATIONS OF RP:

- Designers are able to confirm their design by building a real physical model in minimum time using RP
- Design benefits of RP:
 - $\checkmark {\sf Reduced}$ lead times to produce prototypes
 - \checkmark Improved ability to visualize part geometry
 - \checkmark Early detection of design errors
 - \checkmark Increased capability to compute mass properties .

Problems with Rapid Prototyping:

Part accuracy:

- Staircase appearance for a sloping part surface due to layering
- Shrinkage and distortion of RP parts

> Limited variety of materials in RP

• Mechanical performance of the fabricated parts is limited by the materials that must be used in the RP process

Thank you for your attention

Global Engineering Solutions

